编辑视点

  • 从两则广告看华为5G技术的霸气和

    最近,美国为首的五眼联盟国家罔顾事实,以网络安全的莫……

  • 死磕性价比并非只是便宜,红米新

    1月10日,从小米独立出来的全新品牌红米Redmi新品发布会……

  • 从华为的两次处罚看企业的决心和

    最近,频频上头条的华为一不小心又被网友抓了个现行,在……

  • 嵌入式
  • 电源
  • 汽车电子
  • 单片机
  • 消费电子
  • 测试测量
  • 显示光电
  • 物联网
  • 模拟
  • 通信技术
  • EDA
  • 智能硬件
  • 工业控制
  • 医疗电子
  • 资讯

  • 英特尔:2018年京东成为Intel全球PC最大零售
  • 特斯拉车价上涨被喷,马斯克:就这样吧!
  • 别再说“他还只是个孩子”了!30名代表联名
  • 新品

  • MACOM推出第二代用于单λ100G和400G应用的驱
  • 强韧的100V、1A同步降压转换器使设计人员能
  • Nordic nRF51系列低功耗蓝牙再获客户青睐,
  • 应用

  • 基于电感器的电源模块的设计
  • 基于太阳能电力系统的微型逆变器的介绍
  • 技术专访

  • 搭载M33内核,支持最新蓝牙5.1,

    为智能手表等提供完美的单芯片解决方案,DA1469X生正逢时……

  • 实现厘米级精准定位,蓝牙5.1发布

    非常令人振奋,期待身边很快会有室内精准定位的应用诞生……

  • 基础知识

  • 单片机MCU如何实现让部分代码运行在RAM中?看这里
  • 关于SPI-Flash的一些基础知识
  • 单片机MCU相关基础知识整理篇
  • 电平控制LED灯,电平转换电路
  • 技术交流
  • 侃单片机
  • 开源创客
  • 模拟技术
  • 新手园地
  • ST MCU
  • 无人机
  • 情感天地
  • 编辑推荐

  • 这样的公司,是走还是留?
  • 贪吃蛇是一个适合新手入门算法的很经典的例子。
  • 五年前设计的板子,是该跟大家交代了
  • 一个电气工程师进入电子行业的总结-硬件篇
  • 2019猪年驻福!常驻二姨家!快乐抢红包!!
  • 春节快乐,二姨家为您送上小小的礼物~
  • 【一个小小的个人经验分享】【一】CT107D电路完整分析
  • 说说都有哪些奇葩的年终奖?
  • 可以实现人脸的检测和校正,采样完毕后保存
  • STM32F407 + FPGA + 百兆以太网 + 限流恒压源 + 上位机驱动
  • 厂商

  • 十大热门

  • 18种精密全波整流电路分析与设计及实例
  • 各位大哥大姐,帮小弟看一下电路
  • 超级电容供电RTC电路问题
  • 反面教材关于坡印庭定理
  • GD32E103/GD32F103 各种AD采样程序分享
  • 自制IHM08M1(V1版)板基于FOC SDK5.3库BLDC或PMSM电机驱动:程...
  • 看到一个Pt100测温放大电路,不太清除如何消除线阻的原理
  • 基于TI ADS1115的0-10V输入ADC电路输入保护设计和快速采集问题
  • 各位大小xdata定义的数据到底存放到哪了?
  • 有没有基带无线传输的芯片啊
  • C语言十大基础知识点精讲 (下)
  • C语言进阶剖析教程
  • 3分钟学会四种方法查看树莓派IP地址
  • 一天攻克平衡小车
  • MSP430FR59xx+LaunchPad系列培训
  • 在线研讨会

  • 新兴的视觉物联网方案

    演讲人:泮跃俊

    时间:2018-12-12 10:00:00

  • 安森美半导体针对电动/混动汽车的全面、高能效、高可靠性的汽车功能电子化方案

    演讲人:赵俊亚

    时间:2018-12-14 10:00:00

  • 意法半导体推出高能效、可靠的晶闸管浪涌电流抑制方案

    演讲人:张一峰

    时间:2019-02-28 10:00:00

  • TI在线培训中心

  • 高压隔离技术的工作原理
  • TI 全新一代RGB LED驱动器“点亮”人机交互
  • TI精密实验室 - 隔离
  • 嵌入式课程
  • 电源课程
  • 汽车电子课程
  • 信号链课程
  • 智能蓝牙扫描笔解决方案

    预算:¥250001天前

  • 图像识别产品瑕疵检测(机器视觉)

    预算:¥1600001天前

  • 求成熟STM8L101F3的SPI接口源代码

    预算:小于¥100002天前

  • 分类

  • 通信
  • 工业
  • 电路设计
  • 消费
  • 汽车
  • 智能家居/家电
  • 智能穿戴
  • 安防监控
  • 医疗电子
  • 半导体/EDA
  • 机器人/无人机
  • 软件/系统开发
  • 测量/模拟
  • 电池电源
  • 光电显示
  • 游戏/办公
  • 其他
  • 软件工程师

    北京市4天前

  • 硬件工程师

    北京市4天前

  • 嵌入式开发工程师

    山东省16天前

  • 分类

  • 电子/电器/半导体/仪器仪表
  • 质量管理/安全防护
  • 软件/互联网开发/系统集成
  • 硬件开发
  • IT质量管理/测试
  • 电信/通信技术
  • 汽车制造
  • 其它
  • 888光立方资料包:元件清单 原理图 源代码 动画数组
  • 如何在keil-MDK环境下由STM32标准库(V3.5.0)建立流水灯工程
  • BK3431Q-BK3432-内部flash读写实验(可以代替外置EEPROM)
  • BLE芯片BK3431Q-BK3432参考源码|例程解析-PWM应用实验
  • 供应商QS审核检查表
  • BK3431Q-BK3432烧录工具
  • 单进单出1KVA变频电源技术参数
  • 三菱Fx3G系列可编程控制器_用户手册_硬件篇
  • 电路图

  • 无线温湿度测试系统电路设计图
  • 车用语音手机来电提醒器电路图
  • 车载手机充电器电路图
  • 电力拖动控制线路图13例
  • 单片机蜂鸣器的控制程序与驱动电路图
  • 可控硅控制电路图解及制作13例
  • 激光枪射击游戏的电路图
  • 索尼PS2主机故障维修原理电路图
  • TI designs 参考设计库

  • 用于 2 线、4 到 20 mA 电流环路系统的 RTD 温度发送器
  • 汽车类高电流无刷直流 (BLDC) 电机驱动器
  • 采用 iBeacon 技术的 SensorTag
  • star sky myTI-由你点亮

    [活动时间]:2019.3.7-2019.8.6

  • 从了解示波器开始,开启感恩月活动,好礼相随!

    [活动时间]:2019.02.27-03.27

  • 资金托管便捷版工具上线!不止方便,还很安全

    [活动时间]:长期

  • 头脑风暴“TI考卷”!

    [活动时间]:2019.02.20-03.20

  • 下载站VIP五折起,全站资源免积分下载

    [活动时间]:2019.01.29--02.28

  • Arrow器件采购优惠季,新年大回馈!

    [活动时间]:即日起-2019.4.20

  • 东软载波芯片、模组等一站式解决方案精彩亮相 邀请您一“战”到底

    [活动时间]:即日起—2019.1.21

  • TI 冬季答题恋曲2018

    [活动时间]:2018.12.12-2019.1.14

  • 热门:
  • 电源|
  • 嵌入式|
  • 汽车电子|
  • 下载|
  • 图酷|
  • 外包|
  • 公开课|
  • Datasheet|
  • 会展|
  • 在线研讨会|
  • TI在线培训中心|
  • 库存|
  • 评测|
  • 技术专题|
  • 开发板共享库
  • 首页 > 应用 > 汽车电子
    [导读]意法半导体最先进的40V功率MOSFET可以完全满足EPS (电动助力转向系统)和EPB (电子驻车制动系统) 等汽车安全系统的机械、环境和电气要求。 这些机电系统必须符合汽车AEC Q101规范,具体而言,低压MOSFET必须耐受高温和高尖峰电流。

    摘要

    本文引用地址: http://www.21ic.com/app/auto/201901/866762.htm

    意法半导体最先进的40V功率MOSFET可以完全满足EPS (电动助力转向系统)和EPB (电子驻车制动系统) 等汽车安全系统的机械、环境和电气要求。 这些机电系统必须符合汽车AEC Q101规范,具体而言,低压MOSFET必须耐受高温和高尖峰电流。

    1. 前言

    EPS和EPB系统均由两个主要部件组成:电动伺服单元和机械齿轮单元。电动伺服单元将电机的旋转运动传给机械齿轮单元,进行扭矩放大,执行机械动作。电动伺服单元是用功率MOSFET实现的两相或三相逆变器,如图1所示。

    1.png

    图1. EPS和EPB系统的伺服单元拓扑

    图中负载是一台电机,通常是永磁无刷直流电机(BLDC),由一个12V电池进行供电。

    2. 汽车对功率MOSFET的要求

    EPS和EPB逆变器所用的40V功率MOSFET,要想符合AEC Q101汽车认证标准,必须满足以下所有要求:

    1.开关损耗和导通损耗非常低

    2.输出电流大

    3. Ciss/Crss比值小,EMI抗扰性强

    4.优异的耐雪崩性能

    5.出色的过流和短路保护

    6.热管理和散热效率高

    7.采用稳定的SMD封装

    8.抗负载突降和ESD能力优异

    2.1. AEC Q101功率MOSFET的参数测量值

    我们选择一些符合EPS和EPB系统要求的竞品,与意法半导体的40V汽车功率MOSFET进行对比实验。表1列出了意法半导体的STL285N4F7AG汽车40V功率MOSFET和同级竞品的主要参数测量值。

    2.jpg

    表1. STL285N4F7AG与竞品参数测量值比较表

    由于两个安全系统的工作电压都是在12V-13.5V区间,功率MOSFET的标称电压是40V,因此,只要确保击穿电压(BVdss)接近46V,就能正确地抑制在开关操作过程中因寄生电感而产生的过压。为抑制导通期间的压差,静态导通电阻(RDSon)最好低于1mΩ。只有本征电容和Rg都很小,开关损耗才能降至最低,从而实现快速的开关操作。Crss/Ciss比率是一个非常敏感的参数,有助于防止米勒效应导致的任何异常导通,并可以更好地控制di/dt和dV/dt速率,配合体-漏二极管Qrr反向恢复电荷和反向恢复软度,可显着降低器件对EMI的敏感度。

    为满足低耗散功率和电磁干扰的要求,STL285N4F7AG优化了电容比值(Crss/Ciss)。图2是STL285N4F7AG与竞品的电容比值比较图。

    3.png

    图2. STL285N4F7AG与竞品的Crss/Ciss电容比测量值比较

    此外,图3所示是意法半导体的STL285N4F7AG的体-漏二极管与竞品的性能测量值比较图。

    4.png

    图3:STL285N4F7AG与竞品的体-漏二极管性能测量值比较

    测量参数表明,对于一个固定的di/dt值,STL285N4F7AG的反向恢复电荷(Qrr)和恢复时间(Trr)都小于竞品,这个特性的好处归纳如下:

    -低Qrr可降低逆变器在开启时的动态损耗,并优化功率级的EMI特性;

    -更好的Trr可改善二极管恢复电压上升速率(dv/dt)的动态峰值。在续流期间电流流过体 漏二极管时,Trr是导致电桥故障的常见主要原因。

    因此,dv/dt是保证闩锁效应耐受能力的重要参数,测量结果显示,意法半导体产品的dv/dt性能(图4)优于竞品(图5)。

    4.png

    图4. STL285N4F7AG的dv/dt t测量值

    5.jpg

    图5. 竞品的dv/dt测量值

    2.2. 短路实验性能测试

    我们通过一个短路实验来测量、验证意法半导体40V汽车功率MOSFET在汽车安全应用中的稳定性。电子系统可能因各种原因而发生短路,例如,存在湿气、缺乏绝缘保护、电气部件意外接触和电压过高。因为短路通常是意外造成的,所以短路很少是永久的,一般持续几微秒。在短路期间,整个系统,特别是功率级必须承受多个高电流事件。我们用STL285N4F7AG和测试板做了一个短路实验,测量结果如图6所示:

    7.png

    图6:测试板

    按照以下步骤完成实验:

    1)用曲线测量仪预先测试主要电气参数;

    2)测试板加热至135°C,并施加两次10μs的短路脉冲,间隔小于1s。限流器保护功能激活做一次实验,不激活做一次实验。

    3)对器件进行去焊处理,并再次测量主要电气参数,检查功率MOSFET的完整性或性能衰减。

    测量结果如图7所示。

    8.png

    图7:STL285N4F7AG短路测试

    在短路事件过程中测量到的实际电流值是在2000A范围内,脉冲持续时间为10μs。我们进行了十次测试,Tperiod = 5s。STL285N4F7AG成功地承受住短路冲击,未发生任何故障;但当电流值大于2400A时,出现故障(图8)。

    9.jpg

    图8. STL285N4F7AG失效时的电流测量值(Id > 2400A)

    3. 结论

    实验数据表明,意法半导体最先进的AEC-Q101 40V功率MOSFET可轻松符合汽车安全系统的严格要求。因此,意法半导体的新沟槽N沟道器件是汽车EPS和EPB系统的最佳选择。

    4. 参考文献

    [1] F. Frisina " Dispositivi di Potenza a semiconduttore". Edizione DEL FARO Prima Edizione Giugno 2013

    [2] B. Jayant Baliga, Fundamentals of Power Semiconductor Devices, Springer Science, 2008

    [3] N. Mohan, T. M. Undeland, W. P. Robbins: "Power Electronics Converters, Applications and Design" 2nd edition J. Wiley & Sons NY 1995

    [4] B. Murari, F. Berrotti, G.A. Vignola " Smart Power ICs: Technologies and Applications" 2nd Edition

    本文作者

    Filippo, Scrimizzi, 意法半导体, 意大利, filippo.scrimizzi@st.com

    Giuseppe, Longo, 意法半导体, 意大利, giuseppe-mos.longo@st.com

    Giusy, Gambino, 意法半导体s, 意大利, giusy.gambino@st.com

  • 我 要 评 论

    网友评论

    技术子站

    更多

    项目外包

    更多

    推荐博客