编辑视点

  • 从手机到汽车,终端厂商为啥纷纷

    对于一些电子设备终端厂商,以前不曾涉足的芯片设计越来……

  • 乱世纷争:智能网联汽车哪条道路

    智能网联是趋势是未来,不是做不做而是怎么做的问题,做……

  • 从两则广告看华为5G技术的霸气和

    最近,美国为首的五眼联盟国家罔顾事实,以网络安全的莫……

  • 嵌入式
  • 电源
  • 汽车电子
  • 单片机
  • 消费电子
  • 测试测量
  • 显示光电
  • 物联网
  • 模拟
  • 通信技术
  • EDA
  • 智能硬件
  • 工业控制
  • 医疗电子
  • 资讯

  • 安声科技获6000万A+轮融资,三维主动降噪让
  • 埃森哲收购技术咨询公司Zielpuls
  • 盘点智能硬件编程正确打开方式
  • 新品

  • 联想推出全球首款搭载国产双频北斗导航手机
  • 魅族:奔向5G新时代
  • 苹果iPhone XR2下血本?你期待吗?
  • 应用

  • 必须掌握的MOS管驱动设计知识
  • 模拟电路设计届的九层妖塔
  • 技术专访

  • 如何从软件方面有效降低PCB设计成

    近日,Altium在北京的办公室正式投入运营,同时也带来了……

  • 中小容量存储界的黑马,集齐NAND

    Fidelix的加入对东芯无异于锦上添花,需要强调的是,Fid……

  • 基础知识

  • 单片机MCU如何实现让部分代码运行在RAM中?看这里
  • 关于SPI-Flash的一些基础知识
  • 单片机MCU相关基础知识整理篇
  • 电平控制LED灯,电平转换电路
  • 技术交流
  • 侃单片机
  • 开源创客
  • 模拟技术
  • 新手园地
  • ST MCU
  • 无人机
  • 情感天地
  • 编辑推荐

  • 随机抽奖!STM32 中国峰会直播进行中ing大家来一睹为快
  • 【2019ST峰会的故事】+居然中奖了
  • PAC1934之惊喜体验
  • 【3月晒板卡】PIC24F Curiosity开发板体验0x01开箱
  • ST自由学习+用TouchGFX做个打地鼠游戏
  • 【2月】晒板卡PAC1394 USB功率表
  • ST自由学习+不成功的项目模拟(充数)
  • 【ST开发视频】+简单上手
  • 2019年蓝桥杯单片机组备考心得
  • 【已结束】“21ic DIY秀”网上投票评选开启啦,加分机会,...
  • 厂商

  • 十大热门

  • 求助100mH电感,最大电流2A,最大直流电阻1欧
  • 大家希望PIC和AVR单片机有哪些新的特性?
  • 请教一个滤波问题
  • 十几年后重回论坛,格外亲切!
  • STM32F373有标准库吗?
  • 请教RTC时钟走慢问题
  • Microchip祝大家劳动节快乐!
  • DC-DC电源设计中开关二极管作用
  • 请教,输入5V2A 怎么输出恒流5V800mA
  • 在线求助,4折优惠购买ICD4,支付宝无法付款。
  • 虚拟局域网与无线局域网
  • 计算机网络概述与数据通信技术基础
  • 硬件设计与开发(第七部)
  • Android项目开发实战-秘密APP
  • Android项目开发实战-微信SDK的集成与使用实战开发
  • 在线研讨会

  • 安森美半导体的无线互联方案

    演讲人:严军刚

    时间:2019-05-21 10:00:00

  • 碳化硅MOSFET驱动及保护设计

    演讲人:赵佳,郑姿清

    时间:2019-06-04 10:00:00

  • ST LV Mosfet F7 series and package solution(ST F7系列低压Mosfet及其封装方案

    演讲人:吕晓东

    时间:2019-06-11 10:00:00

  • TI在线培训中心

  • 消费电子应用中不容忽视的比较器方案
  • DC/DC 变换器设计中的常见错误及解决方案
  • 如何提高电机驱动和逆变器应用的性能和可靠性?介绍两种简单高效的方法
  • 嵌入式课程
  • 电源课程
  • 汽车电子课程
  • 信号链课程
  • 单片机C8051 Bin文件转成C程序

    预算:¥300004天前

  • 土壤EC值检测设备

    预算:¥700003天前

  • 运动相机方案

    预算:¥1000003天前

  • 分类

  • 通信
  • 工业
  • 电路设计
  • 消费
  • 汽车
  • 智能家居/家电
  • 智能穿戴
  • 安防监控
  • 医疗电子
  • 半导体/EDA
  • 机器人/无人机
  • 软件/系统开发
  • 测量/模拟
  • 电池电源
  • 光电显示
  • 游戏/办公
  • 其他
  • 结构工程师

    山东省6天前

  • 嵌入式硬件工程师

    北京市6天前

  • 嵌入式工程师

    广东省6天前

  • 分类

  • 电子/电器/半导体/仪器仪表
  • 质量管理/安全防护
  • 软件/互联网开发/系统集成
  • 硬件开发
  • IT质量管理/测试
  • 电信/通信技术
  • 汽车制造
  • 其它
  • lora原理图SX1278_PCB
  • FATFS文件系统深入理解
  • Infineon BTS54040-LBB datasheet
  • 总线判优逻辑介绍PPT
  • 总线的通信方式PPT
  • Infineon BTS7040-2EPA datasheet
  • Infineon BTS71040-4ESA datasheet
  • 异步电机书籍资料
  • 电路图

  • 无线温湿度测试系统电路设计图
  • 车用语音手机来电提醒器电路图
  • 车载手机充电器电路图
  • 电力拖动控制线路图13例
  • 单片机蜂鸣器的控制程序与驱动电路图
  • 可控硅控制电路图解及制作13例
  • 激光枪射击游戏的电路图
  • 索尼PS2主机故障维修原理电路图
  • TI designs 参考设计库

  • 用于 2 线、4 到 20 mA 电流环路系统的 RTD 温度发送器
  • 汽车类高电流无刷直流 (BLDC) 电机驱动器
  • 采用 iBeacon 技术的 SensorTag
  • 上传资料赢千元现金,“全勤”双重奖励!

    [活动时间]:2019.05.01--07.31

  • “芯”驱动,新未来——开启你的汽车电子

    [活动时间]:即日起~5.6

  • 汽车驱动创新,让生活快人一步领大奖

    [活动时间]:即日起~5.8

  • 安森美半导体Fan Club火热开启,赚取积分,换奖品

    [活动时间]:2019.04.02--07.02

  • 转转转~TI好礼转不停

    [活动时间]:2019.3.29-2019.5.5

  • 开通21ic下载VIP,送豪华礼包!先到先得

    [活动时间]:2019.03.21--05.20

  • star sky myTI-由你点亮

    [活动时间]:2019.3.7-2019.8.6

  • 资金托管便捷版工具上线!不止方便,还很安全

    [活动时间]:长期

  • 热门:
  • 电源|
  • 嵌入式|
  • 汽车电子|
  • 下载|
  • 图酷|
  • 外包|
  • 公开课|
  • Datasheet|
  • 会展|
  • 在线研讨会|
  • TI在线培训中心|
  • 库存|
  • 评测|
  • 技术专题|
  • 开发板共享库
  • 首页 > 应用 > 汽车电子
    [导读]车内系统的电子产品含量持续成长,原因是市场对自动化、安全性、能耗优化和高质量体验的要求越来越高。在此背景之下,使用直流马达的应用数量也不断上扬。

    摘要

    车内系统的电子产品含量持续成长,原因是市场对自动化、安全性、能耗优化和高质量体验的要求越来越高。在此背景之下,使用直流马达的应用数量也不断上扬。

    本文将分析车用直流马达的市场趋势,并说明何以从诊断功能、交换时间的优化、减轻重量和(最重要的一点)提升可靠度各方面来看,固态驱动器(SSD)都是比较好的设计架构。

    我们还会特别加以说明,为何在所有专为车用直流马达控制所设计的全集成电路当中,新推出的VIPower™ M0-7 H桥系列能够成为同等级最佳选择。

    .

    1.png

     

    市场趋势

    预估车用直流马达系统的需求将稳定成长,未来5年的年成长率约在3.1%左右。车身周边的需求主要来于自车门锁、电动后照镜、座椅调整、清洁剂帮浦、雨刷、车窗开关、天窗和电动滑门等传统应用。但还有许多新崛起且十分吸引消费者的应用逐渐面市,部分实例包括抬头显示器(HUD)、隐藏式车门把手、电动尾门、电动车换档切换器和电动车充电器锁。

     

    2.png

     

    考虑以上状况,估计2020年全球各地与车身相关的车用直流马达需求将达到20亿个。

    下图为各种应用所占比例,所有应用耗电都在30W到200W之间。

    在车身应用上驱动直流马达使用继电器和内建芯片的比较

    过去汽车产业一直将继电器视为一种简单又便宜的解决方案,用来驱动直流马达。但这种想法正逐渐改变,现在汽车制造商认为SSD才是更适合新应用设计的选择。SSD因为具有高度可靠的质量且诊断功能更为强化,很容易就能建置各种创新功能,像是驱动各种可变负载配置文件(例如电动尾门)或控制动作的顺畅度(例如车窗开关或座位调整)、消除继电器开关噪音以及增加豪华感。

    最重要的是,全世界的地方立法机构已开始针对汽车的污染物质和二氧化碳排放设定新的限制,汽车结构必须有所调整,尤其是动力负载的供应,皆必须采用效率更高的电子组件。虽然新标准的冲击对象将以动力总成(power-train)系统为主,车身控制模块(Body Control Module,BCM)还是有一部分关联性。

    因此我们预测,2020-2025年间由SSD驱动的直流马达每年平均成长6.7%,逐渐抢攻继电器的市占率。

     

    QQ截图20190412175242.jpg

     

     

    QQ截图20190412175302.jpg

     

    在此情况下,意法半导体的VIPowerTM M0-7 H-桥系列产品将成为在汽车应用的马达控制方面,同等级组件当中最佳选择。M0-7 H-桥系列将逻辑功能和动力结构整合至单一封装,让芯片内建智能功能因此除了从提供简单驱动作用到还能防止故障,提供先进的诊断和保护功能、减少所需零件数量、提升可靠度并节省印刷电路板(PCB)面积。

    可靠度提升 进而延长10倍的使用寿命

    继电器触点是一种可导电的金属片,相互连接好让电流通过。机械式开关触点常见的问题包括会听见噪音,还有终端顾客因为感受到机械震动而观感不佳(尤其是转换频率驱动应用)。除此之外,继电器切换时会造成电弧噪音,进而产生电磁干扰(EMI)。为了降低继电器切换噪音,就需要电阻电容减震器(RC snubber)和续流二极管(flywheel Diode)等额外零件,但这些额外零件会对最后结构的复杂性带来负面影响。切换时产生的机电应力,中长期的影响就是会降低接触电阻和效能,让继电器无法使用或缩短寿命。继电器效能的劣化则会降低可靠度。

    固态切换器没有活动零件,因为机械式触点已被晶体管所取代:因此不会有电弧接触、磁场或可闻噪音等问题。输入控制兼容于大部份的IC逻辑系列产品,无须额外增加缓冲器、驱动器或放大器,可大幅降低印刷电路板的复杂性和面积。结果就是可靠度提升,交换时间最多可增加10倍。

     

    QQ截图20190412175315.jpg

     

    小型电源封装有助于节省应用面积

    汽车市场朝自动驾驶的方向演进,必须使用越来越多的传感器以及致动器。只要考虑相同间隔里必须装进更多组件,就很容易可以了解为何所占空间所带来的限制越来越严苛。

    通常会使用H桥配置这种拓扑来驱动双向直流马达:交替开启桥式开关,就可能控制马达方向或煞住马达。虽然使用继电器就能轻松建置H桥架构,但采用SSD能大幅减少电路板空间。

    由于一般继电器的印记面积约为250 mm2,至少需要500 mm2的电路板面积才能建置H桥架构。此外,为建置高电压瞬态抑制、系统诊断和保护等功能也必须额外附加离散电路,例如缓冲器、运算放大器与传感器。这些额外零件将大幅增加电路板最终尺寸与复杂度,而且会对应用的可靠度带来负面影响。

     

    6.jpg

     

    最后,电路板盖板与外壳的设计还必须考虑继电器的高度,因此一般来说得保持17 mm的垂直距离。

    考虑到VIPowerTM M0-7技术杰出的节省空间特质,意法半导体H-桥系列产品能将整个马达驱动架构建置到先进的小型电源封装里:SO-16N和PowerSSO-36。分别可以减少60 mm2和106 mm2的印记面积,厚度低于2.5 mm,让印刷电路板更小,系统也能降低重量。除此之外,VIPower™ M0-7 H桥提供无铅封装的环保产品组合,确保杰出的散热效能。

    切换时间和脉宽调变(PWM)控制

    导引H桥架构时,必须特别留意避免电池线和接地之间出现不必要的短路,尤其是在切换阶段;这种状况通常定义为动态击穿(shoot through)。每当击穿事件发生,就会额外产生电池线的噪音和电力消耗,进而降低系统效率。如果H桥是由脉宽调变讯号之类的快速开关所驱动,这个现象就会变得更加严重。

    脉宽调变输入讯号常被用来控制H桥架构,只要改变工作周期,就能调节马达速度和力矩以建置下列先进功能:

    ·防夹功能;

    ·顺畅的起步和停止动作,提升驾乘体验;

    ·失速状况控制;

    ·不受电池电压影响进行马达调速;

    ·

     

    7.jpg

     

    减少起步时的涌入电流

    一般直流马达配置文件会有一个起步期,涌入电流是正常电流的10-12倍。所有电子零件都必须符合规格,才能承受这样的高电流一段时间,而这也会持续影响最终应用的电线尺寸、印刷电路板面积和驱动器功能。

     

    8.png

     

    确实继电器规格书只提供电阻性直流负载最大限度的触点额定值,但此额定值会被高度电感或电容负载大幅降低。

    以脉宽调变讯号驱动直流马达,就可能在有限的力矩下达到顺畅的马达起步。涌入电流也会减少,延长马达启动期。以脉宽调变讯号驱动直流马达,就能优化电力的消耗,进而缩小电线尺寸,整体来说有利于减轻重量。

    继电器并不适合用在需要快速输出切换的系统,切换时间会受机械尖端移动所限制,通常在5毫秒(ms)到最高15毫秒之间。除此之外,微控制器(MCU)必须建置适当的逻辑保护,以防止不必要的交互传导事件。

    VIPowerTM M0-7 H桥系列产品保证提供快速切换时间(通常为1微秒),确保切换频率最高可达20 KHz。切换配置文件经过特别设计,可优化电磁干扰和切换耗损。除此之外,这款芯片还嵌入特殊保护功能,可避免动态和静态交互传导问题。因此,VNH7系列是专为优化系统效能而设计。

    VIPowerTM M0-7系列H桥用于直流马达控制

    VIPower™ M0-7 H桥系列可视为驱动车用直流马达的自然选项,能满足市场对提升可靠度、系统效率及豪华感等优点的需求。由于采用混合模式,M0-7 H桥系列能将逻辑功能和动力结构整合到单一封装,提供全面整合和受保护电路的完整产品组合。因为可以提供不同的开启状态(on-state)电阻(从8 mΩ到最高100 mΩ)且电源封装体积小,该系列产品可确保弹性驾驶及控制功能,涵盖各式各样的负载状态(从极低到最高200W)。

     

    9.png

     

    虽然中低功率组件整合了所有的逻辑功能和完整的功率级(power stage),包括高侧(high side)和低侧(low side)功率金属氧化物半导体(MOS),VNHD7008AY和VNHD7012AY等高功率组件则采用不同架构,包含高侧功率MOS和低侧闸驱动器。因此,要完成H桥架构就必须有外部的低侧功率MOS(建议采用意法半导体STL76DN4LF7AG)。

    20-kHz的脉宽调变速度控制加上诊断机制,让上述产品最适合用于高阶汽车应用。待命模式下耗电极低,最多3微安(μA),且转换期间的切换配置文件也经过优化,尽管会增加电路板上电子零件数量,但可让模块耗电维持低水平。

    由于整合了先进的诊断(VCC电压、外壳温度和电流负载的侦测)与保护功能(过电压、短路、高温和交互传导防护),可同时保护功率级和负载而不影响最终的效率系统,确保装置永远都能在安全操作区域内运转。此外拜关闭状态诊断功能之赐,待命状态期间可监测马达状态,避免开启时可能产生的损害。

    在车身控制模块里结合VIPower™ M0-7的智能功率切换功能以及H桥驱动器,就能节省电力消耗、印刷电路板面积和布线需求。实际成果将是系统可靠度增加,且预估每部车最多可减轻50公斤的重量,而这对污染来说都将呈正面影响,包括内燃机(ICE)车辆的二氧化碳排放减少(估计最高3.5g/km)、电池优化,纯电动车(BEV)的自动驾驶程度也能获得提升。

  • 我 要 评 论

    网友评论

    技术子站

    更多

    项目外包

    更多

    推荐博客