编辑视点

  • 从手机到汽车,终端厂商为啥纷纷

    对于一些电子设备终端厂商,以前不曾涉足的芯片设计越来……

  • 乱世纷争:智能网联汽车哪条道路

    智能网联是趋势是未来,不是做不做而是怎么做的问题,做……

  • 从两则广告看华为5G技术的霸气和

    最近,美国为首的五眼联盟国家罔顾事实,以网络安全的莫……

  • 嵌入式
  • 电源
  • 汽车电子
  • 单片机
  • 消费电子
  • 测试测量
  • 显示光电
  • 物联网
  • 模拟
  • 通信技术
  • EDA
  • 智能硬件
  • 工业控制
  • 医疗电子
  • 资讯

  • 安声科技获6000万A+轮融资,三维主动降噪让
  • 埃森哲收购技术咨询公司Zielpuls
  • 盘点智能硬件编程正确打开方式
  • 新品

  • 联想推出全球首款搭载国产双频北斗导航手机
  • 魅族:奔向5G新时代
  • 苹果iPhone XR2下血本?你期待吗?
  • 应用

  • 必须掌握的MOS管驱动设计知识
  • 模拟电路设计届的九层妖塔
  • 技术专访

  • 如何从软件方面有效降低PCB设计成

    近日,Altium在北京的办公室正式投入运营,同时也带来了……

  • 中小容量存储界的黑马,集齐NAND

    Fidelix的加入对东芯无异于锦上添花,需要强调的是,Fid……

  • 基础知识

  • 单片机MCU如何实现让部分代码运行在RAM中?看这里
  • 关于SPI-Flash的一些基础知识
  • 单片机MCU相关基础知识整理篇
  • 电平控制LED灯,电平转换电路
  • 技术交流
  • 侃单片机
  • 开源创客
  • 模拟技术
  • 新手园地
  • ST MCU
  • 无人机
  • 情感天地
  • 编辑推荐

  • 随机抽奖!STM32 中国峰会直播进行中ing大家来一睹为快
  • 【2019ST峰会的故事】+居然中奖了
  • PAC1934之惊喜体验
  • 【3月晒板卡】PIC24F Curiosity开发板体验0x01开箱
  • ST自由学习+用TouchGFX做个打地鼠游戏
  • 【2月】晒板卡PAC1394 USB功率表
  • ST自由学习+不成功的项目模拟(充数)
  • 【ST开发视频】+简单上手
  • 2019年蓝桥杯单片机组备考心得
  • 【已结束】“21ic DIY秀”网上投票评选开启啦,加分机会,...
  • 厂商

  • 十大热门

  • 求助100mH电感,最大电流2A,最大直流电阻1欧
  • 大家希望PIC和AVR单片机有哪些新的特性?
  • 请教一个滤波问题
  • 十几年后重回论坛,格外亲切!
  • STM32F373有标准库吗?
  • 请教RTC时钟走慢问题
  • Microchip祝大家劳动节快乐!
  • DC-DC电源设计中开关二极管作用
  • 请教,输入5V2A 怎么输出恒流5V800mA
  • 在线求助,4折优惠购买ICD4,支付宝无法付款。
  • 虚拟局域网与无线局域网
  • 计算机网络概述与数据通信技术基础
  • 硬件设计与开发(第七部)
  • Android项目开发实战-秘密APP
  • Android项目开发实战-微信SDK的集成与使用实战开发
  • 在线研讨会

  • 安森美半导体的无线互联方案

    演讲人:严军刚

    时间:2019-05-21 10:00:00

  • 碳化硅MOSFET驱动及保护设计

    演讲人:赵佳,郑姿清

    时间:2019-06-04 10:00:00

  • ST LV Mosfet F7 series and package solution(ST F7系列低压Mosfet及其封装方案

    演讲人:吕晓东

    时间:2019-06-11 10:00:00

  • TI在线培训中心

  • 消费电子应用中不容忽视的比较器方案
  • DC/DC 变换器设计中的常见错误及解决方案
  • 如何提高电机驱动和逆变器应用的性能和可靠性?介绍两种简单高效的方法
  • 嵌入式课程
  • 电源课程
  • 汽车电子课程
  • 信号链课程
  • 单片机C8051 Bin文件转成C程序

    预算:¥300004天前

  • 土壤EC值检测设备

    预算:¥700003天前

  • 运动相机方案

    预算:¥1000003天前

  • 分类

  • 通信
  • 工业
  • 电路设计
  • 消费
  • 汽车
  • 智能家居/家电
  • 智能穿戴
  • 安防监控
  • 医疗电子
  • 半导体/EDA
  • 机器人/无人机
  • 软件/系统开发
  • 测量/模拟
  • 电池电源
  • 光电显示
  • 游戏/办公
  • 其他
  • 结构工程师

    山东省6天前

  • 嵌入式硬件工程师

    北京市6天前

  • 嵌入式工程师

    广东省6天前

  • 分类

  • 电子/电器/半导体/仪器仪表
  • 质量管理/安全防护
  • 软件/互联网开发/系统集成
  • 硬件开发
  • IT质量管理/测试
  • 电信/通信技术
  • 汽车制造
  • 其它
  • lora原理图SX1278_PCB
  • FATFS文件系统深入理解
  • Infineon BTS54040-LBB datasheet
  • 总线判优逻辑介绍PPT
  • 总线的通信方式PPT
  • Infineon BTS7040-2EPA datasheet
  • Infineon BTS71040-4ESA datasheet
  • 异步电机书籍资料
  • 电路图

  • 无线温湿度测试系统电路设计图
  • 车用语音手机来电提醒器电路图
  • 车载手机充电器电路图
  • 电力拖动控制线路图13例
  • 单片机蜂鸣器的控制程序与驱动电路图
  • 可控硅控制电路图解及制作13例
  • 激光枪射击游戏的电路图
  • 索尼PS2主机故障维修原理电路图
  • TI designs 参考设计库

  • 用于 2 线、4 到 20 mA 电流环路系统的 RTD 温度发送器
  • 汽车类高电流无刷直流 (BLDC) 电机驱动器
  • 采用 iBeacon 技术的 SensorTag
  • 上传资料赢千元现金,“全勤”双重奖励!

    [活动时间]:2019.05.01--07.31

  • “芯”驱动,新未来——开启你的汽车电子

    [活动时间]:即日起~5.6

  • 汽车驱动创新,让生活快人一步领大奖

    [活动时间]:即日起~5.8

  • 安森美半导体Fan Club火热开启,赚取积分,换奖品

    [活动时间]:2019.04.02--07.02

  • 转转转~TI好礼转不停

    [活动时间]:2019.3.29-2019.5.5

  • 开通21ic下载VIP,送豪华礼包!先到先得

    [活动时间]:2019.03.21--05.20

  • star sky myTI-由你点亮

    [活动时间]:2019.3.7-2019.8.6

  • 资金托管便捷版工具上线!不止方便,还很安全

    [活动时间]:长期

  • 热门:
  • 电源|
  • 嵌入式|
  • 汽车电子|
  • 下载|
  • 图酷|
  • 外包|
  • 公开课|
  • Datasheet|
  • 会展|
  • 在线研讨会|
  • TI在线培训中心|
  • 库存|
  • 评测|
  • 技术专题|
  • 开发板共享库
  • 首页 > 专访 > 技术专访
    [导读]上个世纪80年代初Brewer Science发明了Anti-Reflective Coatings(防反射涂层,简称“ARC®”)材料,由此革新了光刻工艺,Brewer Science一直致力于通过技术创新不断推动摩尔定律向前发展。

    上个世纪80年代初Brewer Science发明了Anti-Reflective Coatings(防反射涂层,简称“ARC®”)材料,由此革新了光刻工艺,Brewer Science一直致力于通过技术创新不断推动摩尔定律向前发展。

    在3.20日至22日SEMICON China期间,Brewer Science召开了媒体见面会,和与会媒体分享了材料对半导体市场未来发展的重要性以及Brewer Science的新产品。

    Brewer Science正在给媒体朋友们介绍

    中国的外包半导体封装测试服务提供商 (OSAT) 已开始提供扇出型晶圆级封装 (FOWLP) 技术,并使该技术成为其先进封装工艺的一部分,这一趋势继续呈现增长态势。过去一年中,Brewer Science 又在其业界领先的先进封装解决方案系列中新增了一些关键产品和服务。

    Brewer Science的主营业务主要覆盖先进光刻、晶圆级封装与打印电子类新兴市场三大块。作为一家半导体厂商,Brewer Science触及各行各业,3D产品、汽车电子、物联网、AI等等。


    Brewer Science的产品组合

    Brewer Science在晶圆级封装领域提供三种材料: 临时键合/解键合材料、重分布层增层材料(redistribution layer build-up materials)、晶圆级蚀刻保护和平坦化材料(etch protection & planarization material)。

    为什么需要临时键合/解键合呢?难点和挑战在哪?

    一般晶圆厚度大约为700微米,当被打薄到100微米左右时便失去了自我支撑的能力,并且易碎。为了获得更好的散热和性能、减小器件尺寸和功耗,所以就得引进临时键合/解键合材料,除了提供机械支撑和正面保护的作用外,还可以协助完成下游工艺步骤。在封装技术快速发展的当下,临时键合/解键合已经得到大力发展并广泛运用到了晶圆级封装(WLP)领域,比如PoP层叠封装、扇出型(Fan-out)封装、硅通孔(TSV)技术下的2.5D/3D封装。


    临时键合工艺流程图

    市面上主要的解键合方式则有以下四种:

    1) 化学解键合——适合小规模试产,化学试剂通过载片上的小孔将材料溶解,便可解开。适合科研机构。

    2) 热滑动解键合——当温度达到一个阈值(150℃甚至200℃),所用的键合材料便会流动,随后便可进行滑动解键合。其中的解开速度与材料厚度、性能都有关系。从材料商的角度来看,更注重安全快速的解键合材料。

    3) 机械解键合——不需要加热,在室温情况下就能发生,目前Brewer Science已经能做到20片Wafer/h。

    4) 激光解键合——速度更快,目前能做到50片wafer/h,该方法也不会产生更多余热,在业内此方法越来越流行,不过如何能在低能量的情况下,能够在无残留或尽可能较少残留的情况下进行解键,就必须要对材料和激光有非常好的了解。

    目前来看,超薄晶圆级封装对于材料的需求包括可耐温达350℃以上、卓越的黏着力、兼容晶圆与面板制程、满足打薄厚度可小于50微米、耐化学性、出色的总厚度变化(TTV)、兼容于后段制程(Downstream Process)、高产率易于加工,以及低成本。


    晶圆级封装的需求和挑战

    这些需求也为材料商带来了新挑战,如临时键合材料需耐高温、容易分离不残留、更广泛的热循环等,因此专注于协助客户进入更新制程与封装技术的Brewer Science,推出了BrewerBOND® T1100 和 BrewerBOND® C1300 系列材料共同创造了 Brewer Science 首个完整、双层的临时键合和解键合系统。BrewerBUILD™ 薄式旋涂装封装材料专门用于重分布层 (RDL)——优先扇出型晶圆级封装 (FOWLP),Brewer Science 预计更多中国公司将会在不久的将来开始使用此工艺。

    EUV虽为主流,但Brewer Science仍会继续研发DSA

    一直以来,光刻技术的进步对更小半导体工艺节点至关重要。由于预测到浸润式光刻技术之扩展能力存在局限性,业界不断追求着下一代光刻技术。并且提出了几种技术,涵盖极紫外光光刻(EUV)、多波束电子束光刻、纳米(nm)压印光刻及嵌段共聚物的定向自组装(DSA)技术。

    EUV作为主流的光刻技术,目前已被很多大的代工厂所采用,DSA却未受大量关注。为何Brewer Science会投资研发DSA?在解答该问题前,先来了解下何为DSA。DSA中文名为嵌段共聚物定向自组装,DSA于21世纪初得到初步发展,并在随后几年里引起了主要半导体制造商的高度关注,后来在一定程度上失宠,部分原因是EUV光刻获得了重要投资,取得了进步。而目前,由于EUV技术的成本过高,也暂缓了其快速发展的脚步。在Brewer Science看来,对于EUV和DSA不是两者选其一的选择题,充分利用两者的优势或许会获得更大的机会。DSA和EUV它们最终会成为精细间距光刻工艺运用在N7等节点的主流技术。业内企业应跳出孤军奋战的局面,且材料供货商和化工公司应建立合作关系以迎接这种转变。所以Brewer Science会对这两个技术都会投入研发以应为未来制程技术演进的需求,对于客户来说他们也会多一种选择。


    Brewer Science对先进光刻的贡献


    清洗工艺流程的示例

    最后,Brewer Science认为中国市场将是未来几年的主要增长市场,随着中国持续推进本土半导体制造基础设施的建设,对于设备和材料的需求也必将大大增加。Brewer Science看好中国市场的未来的发展,Brewer Science 正在巩固其作为中国地区领先材料供应商的地位。

    Brewer Science 仍在继续扩大其技术组合,以囊括可实现先进光刻、薄晶圆处理、3D 集成、化学和机械设备保护的产品以及基于纳米技术的产品,从而更好地推动半导体材料技术的发展,做这个时代的领路人。

  • 我 要 评 论

    网友评论

    技术子站

    更多

    项目外包

    更多

    推荐博客